不过根据题目中所给条件的不同,可以大致分成两类:一类是最大值和最小值都能实现;另一类是最大值或最小值只能实现其中一个。下面我们就这个联考真题来分析下这种方法是如何应用的。
【例1】刘女士今年48岁,她说:“我有两个女儿,当妹妹长到姐姐现在的年龄时,姐妹俩的年龄之和比我到那时的年龄还大2岁。”问姐姐今年多少岁?
A. 23 B. 24
C. 25 D. 不确定
【解析一】典型年龄问题:由“妹妹长到姐姐现在的年龄时”可知姐妹之间存在年龄差,但是具体差几岁我们不清楚,所以设年龄差为a岁,即a年后妹妹长到姐姐现在的年龄,设姐姐今年为x岁,则根据“姐妹俩的年龄之和比我到那时的年龄还大2岁”得出(x+a)+x=(48+a)+2,解得x=25岁,所以选择C选项。
【解析二】此题就是典型的单侧极限法的应用,因为姐妹之间的年龄差值未知,所以我们讨论极限情况:最小值为0,最大值不能确定。所以我们可以直接讨论姐妹年龄差为0岁,即双胞胎时的情况:设姐姐今年为x岁,则根据“姐妹俩的年龄之和比我到那时的年龄还大2岁”得出x+x=48+2,解得x=25岁,所以选择C选项。
比较下两种解法,后者是更侧重考察实际的理解分析能力,更能体现出一个公务员的内在素质,而且也比前者大大的缩短了解题时间。我们来通过下面这个例题再来体会下。
【例2】有两只相同的大桶和一只空杯子,甲桶和乙桶分别装一样多的牛奶和糖水,先从甲桶内取出一杯牛奶倒入乙桶,再从乙桶取出一杯糖水和牛奶的混合倒入甲桶,问,此时甲桶内的糖水多还是乙桶内的牛奶多?
A.无法判定 B.甲桶糖水多
C.乙桶牛奶多 D.一样多
【解析】此题如果按照常规的浓度问题来求解,很多考生只能放弃,应为太浪费时间,但是如果我们考虑杯子的极值:最小值不能设定为0,最大值可以与溶液的容积一样大。所以题目中的第一步可以转换为完全混合,第二步将混合液体倒回,故甲桶内的糖水和乙桶内的牛奶一样,所以选择D选项。
这种单侧极限思想的应用非常广泛,比如也可以应用于类似的构造类问题中。
【例3】一个班里有30名学生,有12人会跳拉丁舞,有8人会跳肚皮舞,有10人会跳芭蕾舞。问至多有几人会跳两种舞蹈?
A.12人 B.14人
C.15人 D.16人
【解析】“至多有几人会跳两种舞蹈”即最大值的考虑,如果30人每人多会2个即出现最大值,即答案为30÷2=15人,所以选择C选项。
但是有些问题可能相对复杂,未必都是像【例3】一样直接就能计算出结果,需要我们根据题目中的条件进行一定的转换。
【例4】有一排长椅总共有65个座位,其中已经有些座位上有人就坐。现在又有一人准备找一个位置就坐,但是此人发现,无论怎么选择座位,都会与已经就坐的人相邻。问原来至少已经有多少人就坐?
A. 13 B. 17
C. 22 D. 33
【解析】至少就坐的人数即最小值的考虑,根据条件等同于每个人所占座位最多,由于题目限制“相邻”,所以每人最多占3个位置,推出就坐的人数最少为65÷3≈21.7,说明需要22人就坐,所以选择C选项。
这种极限思想的考察在最近几年的考试中多次出现,华政公务员考试研究中心(he.hzgwyw.com)希望大家能通过以上几道真题的分析能都掌握这种方法,真正在做题时能达到事半功倍的效果。