一、基本概念
n×n阶矩阵被称为n阶方阵,即方阵就是行数与列数一样多的矩阵。比如学生排队、士兵列队等。
二、核心公式
1.方阵总人数=最外层每边人数的平方(方阵问题的核心)
2.方阵最外层每边人数=(方阵最外层总人数÷4)+1
3.方阵外一层总人数比内一层总人数多2
4.去掉一行、一列的总人数=去掉的每边人数×2-1
5.相邻两圈的人数都满足:外圈比内圈多8人
三、经典真题
例1.用红、黄两色鲜花组成的实心方阵(花盆大小完全相同),最外层是红花,从外往内每层按红花、黄花相间摆放。如果最外层一圈的正方形有红花44盆,那么完成造型共需黄花( )。
A.48盆 B.60盆 C.72盆 D.84盆
华政解析:在方阵中,相邻两圈之间,外圈人数总是比内圈人数多8,则相隔一圈相差16,并且成等差数列。题目中最外圈红花为44,则次外层黄花为36,可知黄花总数为36+20+4=60。故本题选B。
例2.学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?
A.256人 B.250人 C.225人 D.196人
华政解析:方阵问题的核心是求最外层每边人数。
根据四周人数和每边人数的关系可以知:
每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就解出来了。
方阵最外层每边人数:60÷4+1=16(人)
整个方阵共有学生人数:16×16=256(人)
所以,正确答案为A。
华政教育专家认为,方阵问题只要掌握几个核心公式并辅以一定量的练习题加以巩固,在考试时遇到此类问题就能快速地迎刃而解!